Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Acta Pharmaceutica Sinica B ; (6): 283-294, 2018.
Article in English | WPRIM | ID: wpr-690910

ABSTRACT

Chuangxinmycin is an antibiotic isolated from CPCC 200056 in the 1970s with a novel indole-dihydrothiopyran heterocyclic skeleton. Chuangxinmycin showed antibacterial activity and efficacy in mouse infection models as well as preliminary clinical trials. But the biosynthetic pathway of chuangxinmycin has been obscure since its discovery. Herein, we report the identification of a stretch of DNA from the genome of CPCC 200056 that encodes genes for biosynthesis of chuangxinmycin by bioinformatics analysis. The designated cluster was then confirmed to be responsible for chuangxinmycin biosynthesis by direct cloning and heterologous expressing in M1146. The cytochrome P450 CxnD was verified to be involved in the dihydrothiopyran ring closure reaction by the identification of seco-chuangxinmycin in M1146 harboring the gene cluster with an inactivated . Based on these results, a plausible biosynthetic pathway for chuangxinmycin biosynthesis was proposed, by hijacking the primary sulfur transfer system for sulfur incorporation. The identification of the biosynthetic gene cluster of chuangxinmycin paves the way for elucidating the detail biochemical machinery for chuangxinmycin biosynthesis, and provides the basis for the generation of novel chuangxinmycin derivatives by means of combinatorial biosynthesis and synthetic biology.

2.
Acta Pharmaceutica Sinica ; (12): 105-9, 2016.
Article in Chinese | WPRIM | ID: wpr-505098

ABSTRACT

Chuangxinmycin (CM) from Actinoplanes tsinanensis was an antibiotic discovered by Chinese scientists about 40 years ago. It contains a new heterocyclic system of indole fused with dihydrothiopyran, whose biosynthetic mechanism remains unclear. CM is used as an oral medicine in the treatment of bacterial infections in China. The simple structure makes CM as an attractive candidate of structure modification for improvement of antibacterial activity. Recently, we analyzed the secondary metabolites of Actinoplanes tsinanensis CPCC 200056, a CM producing strain, as a natural CM analogue. We discovered the first natural CM analogue 3-demethylchuangxinmycin (DCM) as a new natural product. Compared to CM, DCM exhibited a much weaker activity in the inhibition of the bacterial strains tested. The finding provides valuable information for the structure-activity relationship in the biosynthesis of CM.

3.
Acta Pharmaceutica Sinica ; (12): 155-60, 2013.
Article in Chinese | WPRIM | ID: wpr-445516

ABSTRACT

Microbial secondary metabolites are one of the major sources of anti-bacterial, anti-fungal, antitumor, anti-virus and immunosuppressive agents for clinical use. Present challenges in microbial pharmaceutical development are the discovery of novel secondary metabolites with significant biological activities, improving the fermentation titers of industrial microbial strains, and production of natural product drugs by re-establishing their biosynthetic pathways in suitable microbial hosts. Synthetic biology, which is developed from systematic biology and metabolic engineering, provides a significant driving force for microbial pharmaceutical development. The review describes the major applications of synthetic biology in novel microbial secondary metabolite discovery, improved production of known secondary metabolites and the production of some natural drugs in genetically modified or reconstructed model microorganisms.

4.
Chinese Journal of Biotechnology ; (12): 1109-1114, 2011.
Article in Chinese | WPRIM | ID: wpr-324497

ABSTRACT

To identify the anti-bacterial compound(s) from Streptomyces hygroscopicus 17997, a geldanamycin producer, silica gel thin layer chromatography (TLC) TLC was used to separate the secondary metabolites of S. hygroscopicus 17997. Compound(s) from the silica gel TLC with anti-Gram positive bacteria activity and becoming red upon color reaction by 2.0 mol/L NaOH was analyzed by HPLC. The UV absorption profile and the retention time of a peak of HPLC were identical to those of authentic elaiophylin. A conserved region of dTDP-glucose-4,6-dehydratase (Tgd) gene was amplified by PCR from the genomic DNA of Streptomyces hygroscopicus 17997. DNA sequence analysis of the amplified DNA fragment indicated that it should be the tgd gene of elaiophylin biosynthetic gene cluster. These results implied that the compound in the peak of HPLC was elaiophylin, a macrodiolide antibiotic. The compound was then confirmed to be elaiophylin by LC-(+)-ESI-MS, which revealed that Streptomyces hygroscopicus 17997 was an elaiophylin producer. At the same time, a fast procedure, which consisted of silica gel TLC, color reaction, HPLC, PCR detection and DNA sequence analysis of tgd gene, and LC-(+)-ESI-MS, was established for rapid identification of elaiophylin and its producer.


Subject(s)
Benzoquinones , Metabolism , Chromatography, Liquid , Methods , DNA, Bacterial , Genetics , Hydro-Lyases , Genetics , Lactams, Macrocyclic , Metabolism , Macrolides , Metabolism , Mass Spectrometry , Methods , Sequence Analysis, DNA , Streptomyces , Genetics , Metabolism
5.
Chinese Journal of Biotechnology ; (12): 847-853, 2009.
Article in Chinese | WPRIM | ID: wpr-286633

ABSTRACT

Ansamycins, such as rifamycin and ansamitocin, usually consist of a group of structural similar components. Geldanamycin, a benzenic ansamycin, has been found to consist of four structural similar components. We analyzed the geldanamycin (GDM) preparation from Streptomyces hygroscopicus 17997 by LC-ESI(+)-MS/MS, and discovered five novel and one known GDM analogues in trace amounts. Based on the ESI(+)-MS/MS spectra of these GDM analogues, and the present understanding of GDM biosynthesis, we proposed the possible chemical structures of these GDM analogues. Three novel GDM analogues, all having the same molecular formula of C29H42N2O10, were GDM biosynthetic derivatives with one of the three C-C double bonds between C2-C3, C4-C5 and C8-C9 in GDM changed to mono-hydroxylated C-C single bond. The other two novel GDM analogues, having the same molecular formula of C28H38N2O8, were 17(or 12, or 4)-desmethoxylgeldanamycin and 4,5-dihydro-10,11-dehydrate-17-desmethyl-17-hydroxylgeldanamycin, respectively. The known GDM analogue, having the molecular formula of C29H42N2O9, was 4, 5-dihydrogeldanamycin, an intermediate in GDM biosynthesis. The discovery of novel GDM analogues provided us new insights in understanding the biosynthetic details of GDM, and clues of obtaining GDM derivatives by gene-disruption and combinatorial biosynthesis.


Subject(s)
Anti-Bacterial Agents , Chemistry , Benzoquinones , Chemistry , Chromatography, Liquid , Methods , Lactams, Macrocyclic , Chemistry , Tandem Mass Spectrometry , Methods
6.
Chinese Journal of Biotechnology ; (12): 2086-2092, 2008.
Article in Chinese | WPRIM | ID: wpr-302869

ABSTRACT

Spiramycin and midecamycin are 16-membered macrolide antibiotics with very similar chemical structures. Spiramycin has three components, namely spiramycin I, II and III. Spiramycin II and III are, respectively, the O-acetyl and propionyl derivatives at C3-hydroxyl group of spiramycin I. Midecamycin has four components, and the C3-hydroxyl group of midecamycin is all O-propionylated. The enzyme adding acyl group(s) at the C3-hydroxyl group during the biosynthesis of spiramycin and midecamycin is 3-O-acyltransferase. The 3-O-acyltransferases for spiramycin and midecamycin are also very similar, and presume to function when exchanged. To explore whether the 3-O-acyltransferase for midecamycin biosynthesis hold still the character of selective and efficient propionylation for spiramycin I at its C3-hydroxyl group, we inserted mdmB, the 3-O-acyltransferase gene from Streptomyces mycarofaciens ATCC 21454 for midecamycin biosynthesis, into a mutant strain of S. spiramyceticus F21, in which the 3-O-acyltransferase gene for spiramycin biosynthesis, sspA, was deleted; and the mdmB was integrated exactly into the chromosomal site where the sspA was deleted. We name this "hybrid" strain as SP-mdmB. HPLC analysis of the spiramycin produced by SP-mdmB showed that spiramycin I was still the major component, although the relative proportions of both spiramycin II and III increased significantly. We thus conclude that MdmB from Streptomyces mycarofaciens ATCC 21454 for midecamyicn biosynthesis do not hold the character of selective and efficient propionylation for spiramycin I within S. spiramyceticus F21, and this character is possibly limited in Streptomyces mycarofaciens ATCC 21454 for midecamycin biosynthesis.


Subject(s)
Acylation , Acyltransferases , Genetics , Metabolism , Culture Media , Genes, Bacterial , Genetic Engineering , Methods , Leucomycins , Spiramycin , Streptomyces , Genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL